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Closed form solution for a nonlocal elastic bar in tension
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Abstract

A simple mechanical one-dimensional problem in the context of nonlocal (integral) elasticity is solved analytically.
The nonlocal elastic material behaviour is described by the “Eringen model” whose nonlocality features all reside in the
constitutive relation. This relation, of integral type, contains an attenuation function (usually assumed symmetric)
aimed to capture the diffusion process of the nonlocality effects; it also exhibits a convolution format. The governing
equation is a Fredholm integral equation of second kind whose analytical treatment, even for the usual choice of a
symmetric kernel, is not easy to develop. In the present paper, assuming a specific shape for the attenuation function, a
closed form solution in terms of strains is alternatively obtained by solving a Volterra integral equation of second kind.
The latter can be easily solved with standard techniques, at least for the adopted kernel, taking also advantage from the
symmetry of the solution. Such a closed form solution is an essential result to validate the effectiveness of numerical
procedures aimed to solve more complex mechanical problems in the context of nonlocal elasticity.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The early ideas of nonlocal elasticity can be traced back to the pioneristic works of Kroner (1967), Kunin
(1967), Krumhansl (1968) and Edelen (1969). Improved formulations were then presented in Edelen and
Laws (1971) and Eringen (1972a, 1972b, 1976), till the quite recent contributions of Rogula (1982), Eringen
(1987), etc. The motivation of such studies grounds on the fact that one of the main drawbacks of classical
(local) elasticity theories is that the latter are not able to handle elastic problems in the presence of sharp
geometrical singularities, for which they in fact lead to incongruities. A striking example is, typically, in the
context of continuum fracture mechanics, the singular stress field predicted at a sharp crack-tip. Such in-
ability of the local theory is indeed to be interpreted as the attainment of the limit of applicability of the
theory itself which is reached when some internal characteristic length and/or time scale (such as atomic
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distance, granular distance, relaxation time, lattice parameter, etc.) become comparable with the external
scales (such as wave length, period, area of application of loads, etc.). In other words, the local continuum
elasticity theory is sufficient for the description of physical phenomena adequately represented by the be-
haviour of a very large number of molecules gathered together, otherwise the atomic lattice theory is
necessary (Eringen, 1987). Nevertheless, all the molecular or atomic theories, when applied to solve
problems of practical interest, give rise to an huge amount of cumbersome computations whose results,
when reachable, have to be compared with the ones furnished by experimental investigations. The latter are
usually referred to statistical averages of phenomena arising at atomic level, that is again referred to an
aggregate of molecules or, in a certain sense, to a continuum.

A possible solution to outlined difficulties is offered by a continuum approach endowed with informa-
tion regarding the behaviour of the material microstructure, i.e. applied to the continuum grounding on
the concept of neighbouring points linked together by long range forces or, equivalently, on the capacity
exhibited—at a microstructural level—by an elastic material to transmit information to neighbouring
points within a certain distance. This distance, known as internal length material scale is an essential pa-
rameter to be introduced in the theory in order to take into account phenomena arising at the micro-
structure. In this view, the denied inability of the local continuum elasticity theory arises from the
circumstance that such theory contains no information about the long range forces. The internal length
material scale is absent.

In nonlocal continuum theories, the internal length enters the constitutive equations simply as a material
parameter allowing to work with nonlocal variables conceived, for example, as weighted average of local
variables over all the material points in the body. The internal length parameter drives the weight-
ing process performed over a variable at a certain point. As highlighted in Rogula (1982), (see also the
recent contribution of Polizzotto (2001)), a distinction could be made at this point on the variety of ap-
proaches or techniques belonging to nonlocal elasticity. Namely, the nonlocal elasticity approach can be
qualified as “integral” or ““strongly nonlocal’’ when it expresses the stress at a point of a material domain as
a weighted value of the entire strain field. It can be qualified as “gradient” or “weakly nonlocal” when
the stress is expressed as a function of the strain and its gradients at the same points. Alternatively, an
internal length scale in a continuum can also be introduced by considering polar elasticity as in Cosserat
theory (Sluys, 1992). After all, besides any possible and surely effective classification, when dealing with
a nonlocal approach conceiving, for example, the existence of body couples or making use of a gradient
operator in the constitutive law or, moreover, of an integral operator, the notion of distance, or surface
or volume is involved respectively and at last the idea of an internal length is invoked. The above rea-
sonings should deserve further and deeper investigations but they are out of the aim of the present
paper. The authors’ attention was in fact focused on the search of an exact or closed form solution for a
practical, even though very simple, mechanical problem and this to provide a reference solution for nu-
merical approaches, first proposed in Polizzotto (2001), object of an ongoing research (Polizzotto et al.,
2001).

In this paper the so-called Eringen model of nonlocal integral elasticity is considered. The model, pre-
sented by Eringen and co-workers (Eringen and Kim, 1974; Eringen et al., 1977; Eringen, 1978, 1979) with
reference to linear homogeneous isotropic continua is characterized by a nonlocal elasticity theory applied
in a simplified fashion, in the sense that it differs from the classical local one only for the stress—strain
constitutive relation which exhibits a convolution format. The model, briefly summarized in Section 2, is
applied to a simple 1-D problem, i.e. a nonlocal bar of finite length L, constant cross-section and subjected
to (uniform) tension. To the problem position is devoted Section 3.1 where some remarks on the consistent
enforcement of the boundary conditions are also given. The development of a closed form solution for the
mentioned bar problem and a specific choice of the attenuation function is addressed in Sections 3.2,3.
Diagrams of the analytical solutions for different values of material parameters are plotted in Section 3.4.
Concluding remarks are finally drawn in Section 4.
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2. The Eringen model

The model proposed by Eringen and co-workers (Eringen and Kim, 1974; Eringen et al., 1977) is based
on the key idea that the long-range forces, responsible of the nonlocal behaviour of a homogeneous iso-
tropic elastic material, are adequately described by a constitutive relation of the form:

a(x) = /VK(X,X’)D ce(x')dV VxeV, (1)

where: V is the volume of the 3D domain referred to a Cartesian orthogonal co-ordinate system x =
(x1,%2,x3) and filled by the continuum conceived as an aggregate of material particles, linked one another
by cohesive bonds (between adjacent particles) and long range forces or legaments (between nonadja-
cent particles); dV’ := dV(x'); ¢(x) and &(x) are the second order tensors representing stress and strain
fields at x, respectively; D denotes the elastic moduli fourth-rank tensor of classical (local) isotropic elas-
ticity. Finally the scalar function K(x,X’) is the attenuation or influence function aimed to inject in the
constitutive law the nonlocality effects at the field points (x) produced by the (local) strain at the source
(x).

Typically K(x,x’) is a function of the Euclidean distance |x’ — x|, it is positive and decays more or less
rapidly with increasing distance. To this concern Polizzotto (2001) proposes the use of the geodetical dis-
tance, as the “path of minimum length not intersecting the boundary surface of the body”, and this to
correctly describe the diffusion process of the nonlocality effects even when cracks, holes or, in general,
nonconvex domains are considered. Hereafter reference is made only to convex domains without holes or
inside openings so that the geodetical distance and the Euclidean one are obviously coincident.

The role played by the distance between the source point (x), at which a local variable “acts”, and the
point (x), where its nonlocal effects are detected, is crucial in the description of the diffusion process of the
nonlocality effects captured by the postulated constitutive law. The distance between the two points is
meaningful only if compared with a material parameter, namely the internal length scale ¢. The mentioned
distance can then be qualified as “large” or ““small”” only relatively to £. At small distances, the nonlocality
effects propagate almost unaltered, whereas they reduce sensibly at large distances. Finally, beyond the
maximum distance from the source point within which the diffusion process is physically meaningful—
namely the influence distance—the nonlocality effects are almost vanishing. The influence distance is a
multiple of the internal length ¢ and both have to be considered much smaller than the smallest dimension
of the body or probe specimen. The attenuation function has then to be in effect a scalar function of the
ratio |x' — x|/¢ and this is the usual choice in the literature.

An additional comment on another essential feature of the attenuation function is related to the cir-
cumstance that if £ — 0, i.e. in the limit of a local elastic material behaviour, Eq. (1) has to transform in the
classical local elastic relation: ¢(x) = D : &(x). This essential requisite can be accomplished by requiring
K(|x' —x]|/¢) to become a Dirac delta for £ — 0, i.e. imposing the condition:

/V K(X —x|/0)dV' =1, )

in which V,, is the infinite domain embedding V, if V' is finite.
It is worth noting that Eq. (1) can be alternatively posed in the form:
a(x) =D :&(x), (3)

in which the classical Hooke law format is recovered through the introduction of the nonlocal strain field
€(x) defined as:
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2(x) = //K(x,x’)s(x’)dV’. (4)

According to Egs. (3) and (4) the long range forces, which arise in a homogeneous isotropic elastic material
due to a small strain field &, are described by the stress field o related to a nonlocal strain field g through the
relevant elastic moduli tensor D of isotropic local elasticity. The nonlocal strain field € is connected to the
local one, &, by the convolution formula (4).

Finally, with concern to the constitutive equation of the Eringen model expressed by Eq. (1), a different
shape of it can be set on conceiving the nonlocal elastic material as a two-phase elastic material. Precisely,
phase 1 material (of volume fraction &) complying with local elasticity and phase 2 material (of volume
fraction &,) complying with nonlocal elasticity. The constitutive relation can then be given in the shape (see
e.g. Eringen, 1987; Altan, 1989):

o(x) = &D - (%) + & /V K(x,xX)D : &(x)dV, (5)

with ¢, and ¢, being positive material constants and assuming &, + &, = 1. This general form will be
considered in the following.

3. A nonlocal bar in tension
3.1. Problem position and boundary conditions

The bar of uniform cross-section 4 and finite length L sketched in Fig. 1(a) is considered; for simplicity, it
is set 4 = 1. By hypothesis, the bar is subjected to boundary forces F = 4G applied at the end sections so
that a uniform tensile stress ¢ is induced in the bar. The above boundary forces are, as usual in the lite-
rature, applied at the end sections, just like in a “local elasticity approach”. The bar is made of a nonlocal
homogeneous isotropic linear elastic material whose constitutive behaviour complies with the Eringen
model given in Section 2. The apposite constitutive relation (refer to Eq. (5)) reads:

o(x)=E {élg(x) + & /OLK(x,x’)s(x’) dx’} , (6)

where E is the Young’s modulus and K(x,x') is the attenuation function centered at x, herein assumed
symmetric. Since ¢ = & in all cross sections, by equilibrium, Eq. (6) can be written in the equivalent form:

@
F F

<&
<«

—=Lg— 2Lz — —Lp—

Fig. 1. Nonlocal bar in tension: (a) bar specimen of length L and applied boundary forces; (b) schematic representation of the at-
tenuation function K(x,x’) and of the bar end portions, Lg denoting the influence distance beyond which the diffusion process is
practically vanishing.
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where & := 6/E = uniform nonlocal strain (see Eq. (3)). The latter equation, which is a Fredholm equation
of second kind, makes evident that—contrary to local elasticity—in a finite length nonlocal bar a uniform
stress state is not accompanied by a uniform strain. To this concern the following remarks can be drawn.

Remark 1. The integral term of Eq. (7) is to be interpreted as the result of a weighting process carried on,
within an influence zone centered at x and of length equal to twice the influence distance Lg < L, in which
the attenuation function K(x,x’) plays the role of collecting the nonlocality effects produced at all source
points x’' (refer to Fig. 1(b)). Outside the above influence zone, the attenuation function is practically
vanishing so as the weighting process. Grounding on condition (2) and the above observations the fol-
lowing condition holds:

[ :K(x,x')dx’ o [ : K(ox)dy = 1. (8)

Remark 2. At points x sufficiently far from the end sections, namely Vx : Lr <x < L — Ly, the influence zone
is always inside the bar specimen and thus it collects the strain sources all around x. At these points, a
constant strain solution, say ¢ = &, is achievable by (8).

Remark 3. At points x near to the end sections, namely belonging to the end portions of the bar having each
length Lg, the influence zone exceeds the end section (domain boundary) and it collects obviously only the
strain sources at points x’ belonging to the bar specimen. At these points x a constant strain solution as ¢ = &
is not achievable. For the posed problem the strain values are characterised by an increasing trend in the
end portions and this, in fact, is the typical pattern found in the literature.

From a physical point of view, the existence of an impeding boundary, within which the strain source
distribution and the consequent diffusion processes of the nonlocality effects are confined, produces some
boundary effects that, for a clear understanding should be, or might be, treated with suitable micro-
mechanics investigations. Furthermore, these boundary effects can be accounted for by a more appropriate
definition of the boundary conditions. A recent contribution to this concern has been given in Polizzotto
et al. (2001) where two different possible approaches, able to catch—at a macroscopic level—the mentioned
boundary effects, have been considered. As observed in the quoted paper many intermediate interpretations
are also possible and, to the authors’ knowledge, a consistent assignment of the boundary conditions in a
nonlocal elastic problem is an open research issue. The latter is however beyond the scope of the present
study whose main goal is the determination of an exact solution to the nonlocal bar problem governed by
Eq. (7) and this for a specific choice of the influence function and with the boundary conditions being
applied in a “local fashion”. Such an exact solution is definitely an essential starting point also in the
direction of a more appropriate definition of the nonlocal boundary conditions which is actually the object
of an ongoing research of the authors.

3.2. Search for the unknown strain field

As previously outlined the strain field arising in the bar is given by Eq. (7) which is a Fredholm integral
equation of second kind that can, in general, be solved by application of a variety of classical techniques all
grounding on series expansion of the kernel (refer e.g. to Tricomi, 1987; Krasnov et al., 1983). However,
taking into account that for the mechanical problem under study the unknown strain field ¢(x) is symmetric
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with respect to the mid section x = L/2, Eq. (7) is split into two Volterra integral equations of the second
kind whose solution is more easily obtainable.
To this aim Eq. (7) is firstly expressed in the following general shape:

o(x) = C+i/0 K(jx — ¥'|)e(x') d, 9)

where C =g/, + Cy and A = —&,4¢/&, with Cy and 7, constants to be specified and the kernel is assumed
as a function of the distance between the field (x) and the source (x') points. Referring to Fig. 2 the un-
known strain function &(x) can be conceived as the sum of two contributions defined in the subdomains
[0,x] and [x, L] respectively. Precisely:

e(x) =& (x) + e (x), (10)
with
e (x) =Hkx—xelx); et(x) = H(X —x)e(x). (I1a,b)

The symbol H(x) denotes the Heaviside operator defined as H(x) = 0 forx < 0 and H(x) = 1 forx = 0. On
combining Egs. (9) and (10) the following equality holds:

e(x) = C+ 2 /OL K(x — XH(x — ¥)e(x') dy’ + 4 /OL K(lx =¥ H( — x)e(x') dv. (12)
On setting:

K (x—¥) =K(x—XH(x - ), (13a)

K —x) = K(x — XH( —x), (13b)

viewed as modified kernels defined over the triangular regions depicted in Fig. 3, Eq. (12) can be rewritten

@ £(x) ]
)

(®) £(x)=H (x-x)e(x)

0 X L by
© £(x)=H (x”-x)& (x) }

0 X L X

Fig. 2. Unknown strain function: (a) qualitative pattern in the entire domain [0, L]; (b) and (c) strain function decomposition.
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Fig. 3. Triangular regions defining the modified kernels’ domains and the integration paths of Eq. (14) for fixed x (e.g. x = xp).

gx)=C+2 /OXK_(x —xe (') dx' + }L/ KT (X' —x)et (x)dx'. (14)

On taking into account Eq. (10) and observing that all the quantities (-)~ are meaningful for ¥’ <x and the
ones (-)" for ¥’ > x Eq. (14) can be split as follows:

& (x) :C’—i—/{/OXK’(x—x’)s’(x')dx’ (15a)

e(x)=C+ /'L/LK+(x/ —x)e" (x)dy/, (15b)

where C = C~ + C*. Egs. (15a) and (15b) are the two Volterra integral equations of the second kind in
which Eq. (9) has been split up.

It is worth noting that Eq. (15b) can become formally equal to Eq. (15a) and this simply by a co-ordinate
transformation; in fact on setting: y =L —x; s = L —x' (= ds = —dx’), Eq. (15b) can be written as:

0 ¥
e(y)=Cc" —/l/ K"(y—s)e"(s)ds = C++l/ K" (y —s)e"(s)ds. (16)
v 0
Observing also that at x = y =%, ¢ (%) = &7 (%) the following equality holds true:
C = C‘+ = g, (17)

It is so sufficient to solve only one of the two Volterra equations (15a) or (15b) to have the complete
solution; in fact, denoting with G(x) the solution of (15a) in [0,x], G(L — x) is the solution of (15b) in [x, L],
being the complete solution equal to:

e(x) = G(x) + G(L —x). (18)
3.3. Solution of the Volterra equation (15a)

The solution of Eq. (15a) is herein determined for a specific shape of the attenuation function (Eringen,
1987), namely:
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K(|]x —x|) = Jpe 1" (19)

being obviously: K~ (x — x') = Jge )/ and K*(x' — x) = Jge~ & /*. Condition (2) yields:

1
zo/ Y =1 =y = (20a, b)
s 20
Ao denoting a normalization factor. With the above assumption Eq. (15a) writes:
e =C +4 / e lg(x) Y, 1)
0

in which, on taking into account Eqs. (7), (9) and (20b), A = —¢&,/2¢¢,.
The solution of Eq. (21), obtainable through the method of successive approximations by Neumann’s
series (see e.g. Krasnov et al., 1983), is:

ex)=C"+ /IC’/ R(x,x', A)dx’, (22a)
0
where

R(x,x', A) Zk,,xx ! (22b)

n=

is the resolvent kernel of the integral equation expressed in the shape of Neumann’s series of the iterated
kernels. The latter are given by:

ki(x,X) = k(x,x');  k(x,x) = /Ix k(x,7)k,_1(7,x") dr. (23)

For the assumed kernel (Eq. (19)) it follows:
ki) = e 0

x
kz(x,x’) _ / ef(xfr)//ef(rfx')/é dr = ef(xfx’)/[(x _ xl)

(24)
x n—2 nn—1
n_ —(x—1)/l o—(1—X) /E (t—x) _ e xx)/e (x —x')
ke (x,x) /x’ e e RCEN dr=e RCEE
and then:
R(x,x',)) = e G¥)/lhle=) (25)
On substituting Eq. (25) in (22a), the searched solution is:
M .
£ (x) = C 7 O [1 =™, (26)

To determine the constant C it is sufficient to observe that at x = L/2, &(5) = & (refer to Section 3.1), from
which, by Eq. (10), the following condition holds true:

by, g
=+ =tsc =

4 —T : (1-20), (27a,b)

l\)lco\
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where it has been considered that the exponential term in Eq. (26) vanishes for the usual (i.e. physically
meaningful) values of £ and L. It is easy to verify that, from the above condition, Cy = —(&,/2¢&,)é. On
combining Egs. (27b) and (26) the searched solution is finally:

e (x) = % [1— a9, (28)

which gives the strain field in [0, x] for the examined problem. The solution ¢* in [x, L] is given, simply, by
setting x = L — x in Eq. (28), i.e.

& (x) = g [1 _ Me(;.mxzmﬂ)/z] (29)
and remembering Eq. (18), the complete solution is:
S(X) —F— %ﬁé[e(?ucé'fx)/é + e(MLfié’fowLx)/q Vxe [O,L} (30)

Diagrams of ¢(x) are plotted in the next section for assigned values of & L and material parameters A and £.

For completeness the following can be observed: (i) as easily verifiable Eqgs. (28) and (29) are the exact
solutions of the two Volterra integral equations (15a) and (15b) with constants C and Z previously specified;
(if) in the limit case of ¢ — 0, i.e. for a local elastic material, the complete solution (30) gives &(x) = &,
Vx € [0, L] as it has to be; (iii) the theoretical case of a nonlocal bar of infinite length in tension is governed

() (b)
2.0E-004 —

— §1=O.1 &lzol
1.6E-004 — €,,=1.55E-4 1 =1.0 £ —155F4 1 =2.0
1.2E-004
8.0E-005 —|

. €= 476 E-5 €= 476 E-5
4.0E-005

T T T T T T L L L L I
0 20 40 60 8 100 0 20 40 60 80 100

(©) (d)
2.0E-004

7 §,=0.1 £,=0.1
L.6E-004 — g =155E4 1 =50 €= 1.55 E-4 1 =10
1.2E-004
8.0E-005 |

- €., =476 E-5 €.in=4.76 E-5
4.0E-005

L e s e L B B B B

0 20 40 60 80 100 0 20 40 60 80 100

Fig. 4. Exact strain distribution for the bar problem sketched in Fig. 1 assuming &, = 0.1.
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by Eq. (7) suitable modified. The latter transforms in an integral equation whose solution, for the assumed
kernel (Eq. (19)), can be found in the literature (e.g. Krasnov et al., 1983). As easily verifiable this solution
gives &(x) =&, Vx € [—00,00] as it has to be.

3.4. Diagrams of the exact solution

The solution to the studied nonlocal bar problem posed in Section 3.1 (refer also to Fig. 1(a)) is hereafter
plotted in terms of the strain distributions given by Eq. (30). In Figs. 4 and 5 the strain ¢(x) is reported for
different values of the material parameters ¢, and ¢. All the curves have been obtained for E = 2.1 x 10°
daN/em?; ¢ = 100 daN/cm?; 4 = 1 cm?; L = 100 cm.

The plotted diagrams all show the typical pattern of strain distribution to be expected for the posed
problem. Namely, an increasing trend of the strain values in the bar end portions, with growing strain
values towards the end sections, is evidenced. This effect, previously named “boundary effect”, is obviously
strictly related to the internal length material scale value, ¢, assumed and it grows for growing ¢ values. To
this concern it is worth noting that values of ¢ less than 1 cm have not been reported because the relative
results are similar to the ones obtained for £ =1 cm. Values of ¢ greater than 10 cm are also avoided
because they are physically meaningless if compared to the length L = 100 cm of the bar specimen. Finally
the elastic strain ¢ coincides with its nonlocal value (¢ = 4.76 x 10~°) at all x sufficiently far from the end
portions.

(a) (b)
6.2E-005 —| £=05 £,=0.5
E Smax: 5.95 E-5 1 =10 Smax: 595E-5 l =20
5.8E-005
5.4E-005
5.0E-005 E €. =476ES €, =476 E-5
4.6E-005
LA B B B B LA S s B
0 20 40 60 80 100 0 20 40 60 80 100
© ()]
6.2E-005 §=05 §=05
- Eu=395ES 1 =50 € 0= 5-95 E-5 1 =10
5.8E-005 —|
5.4E-005 —|
5.0E-005 3 €= 4.76 E-5
4.6E-005
LA B B B B B

0 20 40 60 80 100 0 20 40 60 80 100

Fig. 5. Exact strain distribution for the bar problem sketched in Fig. 1 assuming &, = 0.5.
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4. Conclusion

The exact solution (in terms of strains) for a nonlocal elastic bar of finite length L in (uniform) tension
has been determined. The adopted material model is the one known in the literature as the Eringen model
for nonlocal (integral) elasticity whose nonlocality features reside only in the constitutive law expressed
through a convolution type relation.

The Fredholm integral equation of second kind governing the posed problem has been transformed into
two Volterra integral equations of second kind easily solvable by the method of the iterated kernels for the
specific choice of the attenuation function.

The proposed resolutive methodology seems to be applicable, at least for the simple mechanical problem
here studied, to other analytical forms of the attenuation function entering the constitutive relation as long
as they are symmetric.

The exact solution here presented is, in the authors’ opinion, an essential result to validate by com-
parison the effectiveness of approximate and/or numerical procedures aimed to solve mechanical problems
whose solution in the context of nonlocal elasticity is not achievable in closed form.
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