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Abstract

A simple mechanical one-dimensional problem in the context of nonlocal (integral) elasticity is solved analytically.

The nonlocal elastic material behaviour is described by the ‘‘Eringen model’’ whose nonlocality features all reside in the

constitutive relation. This relation, of integral type, contains an attenuation function (usually assumed symmetric)

aimed to capture the diffusion process of the nonlocality effects; it also exhibits a convolution format. The governing

equation is a Fredholm integral equation of second kind whose analytical treatment, even for the usual choice of a

symmetric kernel, is not easy to develop. In the present paper, assuming a specific shape for the attenuation function, a

closed form solution in terms of strains is alternatively obtained by solving a Volterra integral equation of second kind.

The latter can be easily solved with standard techniques, at least for the adopted kernel, taking also advantage from the

symmetry of the solution. Such a closed form solution is an essential result to validate the effectiveness of numerical

procedures aimed to solve more complex mechanical problems in the context of nonlocal elasticity.
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1. Introduction

The early ideas of nonlocal elasticity can be traced back to the pioneristic works of Kr€ooner (1967), Kunin
(1967), Krumhansl (1968) and Edelen (1969). Improved formulations were then presented in Edelen and

Laws (1971) and Eringen (1972a, 1972b, 1976), till the quite recent contributions of Rogula (1982), Eringen

(1987), etc. The motivation of such studies grounds on the fact that one of the main drawbacks of classical

(local) elasticity theories is that the latter are not able to handle elastic problems in the presence of sharp

geometrical singularities, for which they in fact lead to incongruities. A striking example is, typically, in the

context of continuum fracture mechanics, the singular stress field predicted at a sharp crack-tip. Such in-
ability of the local theory is indeed to be interpreted as the attainment of the limit of applicability of the

theory itself which is reached when some internal characteristic length and/or time scale (such as atomic
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distance, granular distance, relaxation time, lattice parameter, etc.) become comparable with the external

scales (such as wave length, period, area of application of loads, etc.). In other words, the local continuum

elasticity theory is sufficient for the description of physical phenomena adequately represented by the be-

haviour of a very large number of molecules gathered together, otherwise the atomic lattice theory is
necessary (Eringen, 1987). Nevertheless, all the molecular or atomic theories, when applied to solve

problems of practical interest, give rise to an huge amount of cumbersome computations whose results,

when reachable, have to be compared with the ones furnished by experimental investigations. The latter are

usually referred to statistical averages of phenomena arising at atomic level, that is again referred to an

aggregate of molecules or, in a certain sense, to a continuum.

A possible solution to outlined difficulties is offered by a continuum approach endowed with informa-

tion regarding the behaviour of the material microstructure, i.e. applied to the continuum grounding on

the concept of neighbouring points linked together by long range forces or, equivalently, on the capacity
exhibited––at a microstructural level––by an elastic material to transmit information to neighbouring

points within a certain distance. This distance, known as internal length material scale is an essential pa-

rameter to be introduced in the theory in order to take into account phenomena arising at the micro-

structure. In this view, the denied inability of the local continuum elasticity theory arises from the

circumstance that such theory contains no information about the long range forces. The internal length

material scale is absent.

In nonlocal continuum theories, the internal length enters the constitutive equations simply as a material

parameter allowing to work with nonlocal variables conceived, for example, as weighted average of local
variables over all the material points in the body. The internal length parameter drives the weight-

ing process performed over a variable at a certain point. As highlighted in Rogula (1982), (see also the

recent contribution of Polizzotto (2001)), a distinction could be made at this point on the variety of ap-

proaches or techniques belonging to nonlocal elasticity. Namely, the nonlocal elasticity approach can be

qualified as ‘‘integral’’ or ‘‘strongly nonlocal’’ when it expresses the stress at a point of a material domain as

a weighted value of the entire strain field. It can be qualified as ‘‘gradient’’ or ‘‘weakly nonlocal’’ when

the stress is expressed as a function of the strain and its gradients at the same points. Alternatively, an

internal length scale in a continuum can also be introduced by considering polar elasticity as in Cosserat
theory (Sluys, 1992). After all, besides any possible and surely effective classification, when dealing with

a nonlocal approach conceiving, for example, the existence of body couples or making use of a gradient

operator in the constitutive law or, moreover, of an integral operator, the notion of distance, or surface

or volume is involved respectively and at last the idea of an internal length is invoked. The above rea-

sonings should deserve further and deeper investigations but they are out of the aim of the present

paper. The authors� attention was in fact focused on the search of an exact or closed form solution for a

practical, even though very simple, mechanical problem and this to provide a reference solution for nu-

merical approaches, first proposed in Polizzotto (2001), object of an ongoing research (Polizzotto et al.,
2001).

In this paper the so-called Eringen model of nonlocal integral elasticity is considered. The model, pre-

sented by Eringen and co-workers (Eringen and Kim, 1974; Eringen et al., 1977; Eringen, 1978, 1979) with

reference to linear homogeneous isotropic continua is characterized by a nonlocal elasticity theory applied

in a simplified fashion, in the sense that it differs from the classical local one only for the stress–strain

constitutive relation which exhibits a convolution format. The model, briefly summarized in Section 2, is

applied to a simple 1-D problem, i.e. a nonlocal bar of finite length L, constant cross-section and subjected
to (uniform) tension. To the problem position is devoted Section 3.1 where some remarks on the consistent
enforcement of the boundary conditions are also given. The development of a closed form solution for the

mentioned bar problem and a specific choice of the attenuation function is addressed in Sections 3.2,3.

Diagrams of the analytical solutions for different values of material parameters are plotted in Section 3.4.

Concluding remarks are finally drawn in Section 4.
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2. The Eringen model

The model proposed by Eringen and co-workers (Eringen and Kim, 1974; Eringen et al., 1977) is based

on the key idea that the long-range forces, responsible of the nonlocal behaviour of a homogeneous iso-
tropic elastic material, are adequately described by a constitutive relation of the form:

rðxÞ ¼
Z
V
Kðx; x0ÞD : eðx0ÞdV0 8 x 2 V; ð1Þ

where: V is the volume of the 3D domain referred to a Cartesian orthogonal co-ordinate system x ¼
ðx1; x2; x3Þ and filled by the continuum conceived as an aggregate of material particles, linked one another

by cohesive bonds (between adjacent particles) and long range forces or legaments (between nonadja-

cent particles); dV 0 :¼ dV ðx0Þ; rðxÞ and eðxÞ are the second order tensors representing stress and strain
fields at x, respectively; D denotes the elastic moduli fourth-rank tensor of classical (local) isotropic elas-

ticity. Finally the scalar function Kðx; x0Þ is the attenuation or influence function aimed to inject in the

constitutive law the nonlocality effects at the field points ðxÞ produced by the (local) strain at the source
ðx0Þ.
Typically Kðx; x0Þ is a function of the Euclidean distance jx0 � xj, it is positive and decays more or less

rapidly with increasing distance. To this concern Polizzotto (2001) proposes the use of the geodetical dis-

tance, as the ‘‘path of minimum length not intersecting the boundary surface of the body’’, and this to

correctly describe the diffusion process of the nonlocality effects even when cracks, holes or, in general,
nonconvex domains are considered. Hereafter reference is made only to convex domains without holes or

inside openings so that the geodetical distance and the Euclidean one are obviously coincident.

The role played by the distance between the source point ðx0Þ, at which a local variable ‘‘acts’’, and the
point ðxÞ, where its nonlocal effects are detected, is crucial in the description of the diffusion process of the
nonlocality effects captured by the postulated constitutive law. The distance between the two points is

meaningful only if compared with a material parameter, namely the internal length scale ‘. The mentioned
distance can then be qualified as ‘‘large’’ or ‘‘small’’ only relatively to ‘. At small distances, the nonlocality
effects propagate almost unaltered, whereas they reduce sensibly at large distances. Finally, beyond the
maximum distance from the source point within which the diffusion process is physically meaningful––

namely the influence distance––the nonlocality effects are almost vanishing. The influence distance is a

multiple of the internal length ‘ and both have to be considered much smaller than the smallest dimension
of the body or probe specimen. The attenuation function has then to be in effect a scalar function of the

ratio jx0 � xj=‘ and this is the usual choice in the literature.
An additional comment on another essential feature of the attenuation function is related to the cir-

cumstance that if ‘ ! 0, i.e. in the limit of a local elastic material behaviour, Eq. (1) has to transform in the

classical local elastic relation: rðxÞ ¼ D : eðxÞ. This essential requisite can be accomplished by requiring
Kðjx0 � xj=‘Þ to become a Dirac delta for ‘ ! 0, i.e. imposing the condition:Z

V1

Kðjx0 � xj=‘ÞdV 0 ¼ 1; ð2Þ

in which V1 is the infinite domain embedding V , if V is finite.

It is worth noting that Eq. (1) can be alternatively posed in the form:

rðxÞ ¼ D : beeðxÞ; ð3Þ

in which the classical Hooke law format is recovered through the introduction of the nonlocal strain fieldbeeðxÞ defined as:
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beeðxÞ ¼ Z
V
Kðx; x0Þeðx0ÞdV 0: ð4Þ

According to Eqs. (3) and (4) the long range forces, which arise in a homogeneous isotropic elastic material

due to a small strain field e, are described by the stress field r related to a nonlocal strain field bee through the
relevant elastic moduli tensor D of isotropic local elasticity. The nonlocal strain field bee is connected to the
local one, e, by the convolution formula (4).

Finally, with concern to the constitutive equation of the Eringen model expressed by Eq. (1), a different

shape of it can be set on conceiving the nonlocal elastic material as a two-phase elastic material. Precisely,

phase 1 material (of volume fraction n1) complying with local elasticity and phase 2 material (of volume
fraction n2) complying with nonlocal elasticity. The constitutive relation can then be given in the shape (see
e.g. Eringen, 1987; Altan, 1989):

rðxÞ ¼ n1D : eðxÞ þ n2

Z
V
Kðx; x0ÞD : eðx0ÞdV 0; ð5Þ

with n1 and n2 being positive material constants and assuming n1 þ n2 ¼ 1. This general form will be

considered in the following.

3. A nonlocal bar in tension

3.1. Problem position and boundary conditions

The bar of uniform cross-section A and finite length L sketched in Fig. 1(a) is considered; for simplicity, it
is set A ¼ 1. By hypothesis, the bar is subjected to boundary forces F ¼ A�rr applied at the end sections so
that a uniform tensile stress �rr is induced in the bar. The above boundary forces are, as usual in the lite-
rature, applied at the end sections, just like in a ‘‘local elasticity approach’’. The bar is made of a nonlocal

homogeneous isotropic linear elastic material whose constitutive behaviour complies with the Eringen

model given in Section 2. The apposite constitutive relation (refer to Eq. (5)) reads:

rðxÞ ¼ E n1eðxÞ
�

þ n2

Z L

0

Kðx; x0Þeðx0Þdx0
�
; ð6Þ

where E is the Young�s modulus and Kðx; x0Þ is the attenuation function centered at x, herein assumed
symmetric. Since r ¼ �rr in all cross sections, by equilibrium, Eq. (6) can be written in the equivalent form:

Fig. 1. Nonlocal bar in tension: (a) bar specimen of length L and applied boundary forces; (b) schematic representation of the at-
tenuation function Kðx; x0Þ and of the bar end portions, LR denoting the influence distance beyond which the diffusion process is

practically vanishing.
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eðxÞ ¼ �ee
n1

� n2
n1

Z L

0

Kðx; x0Þeðx0Þdx0; ð7Þ

where �ee :¼ �rr=E ¼ uniform nonlocal strain (see Eq. (3)). The latter equation, which is a Fredholm equation
of second kind, makes evident that––contrary to local elasticity––in a finite length nonlocal bar a uniform

stress state is not accompanied by a uniform strain. To this concern the following remarks can be drawn.

Remark 1. The integral term of Eq. (7) is to be interpreted as the result of a weighting process carried on,

within an influence zone centered at x and of length equal to twice the influence distance LR � L, in which
the attenuation function Kðx; x0Þ plays the role of collecting the nonlocality effects produced at all source
points x0 (refer to Fig. 1(b)). Outside the above influence zone, the attenuation function is practically

vanishing so as the weighting process. Grounding on condition (2) and the above observations the fol-
lowing condition holds:Z LR

�LR

Kðx; x0Þdx0 ffi
Z 1

�1
Kðx; x0Þdx0 ¼ 1: ð8Þ

Remark 2. At points x sufficiently far from the end sections, namely 8x : LR6 x6 L� LR, the influence zone
is always inside the bar specimen and thus it collects the strain sources all around x. At these points, a
constant strain solution, say e ¼ �ee, is achievable by (8).

Remark 3. At points x near to the end sections, namely belonging to the end portions of the bar having each
length LR, the influence zone exceeds the end section (domain boundary) and it collects obviously only the
strain sources at points x0 belonging to the bar specimen. At these points x a constant strain solution as e ¼ �ee
is not achievable. For the posed problem the strain values are characterised by an increasing trend in the
end portions and this, in fact, is the typical pattern found in the literature.

From a physical point of view, the existence of an impeding boundary, within which the strain source

distribution and the consequent diffusion processes of the nonlocality effects are confined, produces some

boundary effects that, for a clear understanding should be, or might be, treated with suitable micro-

mechanics investigations. Furthermore, these boundary effects can be accounted for by a more appropriate

definition of the boundary conditions. A recent contribution to this concern has been given in Polizzotto

et al. (2001) where two different possible approaches, able to catch––at a macroscopic level––the mentioned
boundary effects, have been considered. As observed in the quoted paper many intermediate interpretations

are also possible and, to the authors� knowledge, a consistent assignment of the boundary conditions in a
nonlocal elastic problem is an open research issue. The latter is however beyond the scope of the present

study whose main goal is the determination of an exact solution to the nonlocal bar problem governed by

Eq. (7) and this for a specific choice of the influence function and with the boundary conditions being

applied in a ‘‘local fashion’’. Such an exact solution is definitely an essential starting point also in the

direction of a more appropriate definition of the nonlocal boundary conditions which is actually the object

of an ongoing research of the authors.

3.2. Search for the unknown strain field

As previously outlined the strain field arising in the bar is given by Eq. (7) which is a Fredholm integral

equation of second kind that can, in general, be solved by application of a variety of classical techniques all

grounding on series expansion of the kernel (refer e.g. to Tricomi, 1987; Krasnov et al., 1983). However,
taking into account that for the mechanical problem under study the unknown strain field eðxÞ is symmetric
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with respect to the mid section x ¼ L=2, Eq. (7) is split into two Volterra integral equations of the second
kind whose solution is more easily obtainable.

To this aim Eq. (7) is firstly expressed in the following general shape:

eðxÞ ¼ C þ k
Z L

0

Kðjx� x0jÞeðx0Þdx0; ð9Þ

where C ¼ �ee=n1 þ C0 and k ¼ �n2k0=n1 with C0 and k0 constants to be specified and the kernel is assumed
as a function of the distance between the field ðxÞ and the source ðx0Þ points. Referring to Fig. 2 the un-
known strain function eðxÞ can be conceived as the sum of two contributions defined in the subdomains

½0; x� and ½x; L� respectively. Precisely:
eðxÞ ¼ e�ðxÞ þ eþðxÞ; ð10Þ

with

e�ðxÞ ¼ Hðx� x0ÞeðxÞ; eþðxÞ ¼ Hðx0 � xÞeðxÞ: ð11a; bÞ

The symbol HðxÞ denotes the Heaviside operator defined as HðxÞ ¼ 0 for x < 0 and HðxÞ ¼ 1 for xP 0. On
combining Eqs. (9) and (10) the following equality holds:

eðxÞ ¼ C þ k
Z L

0

Kðjx� x0jÞHðx� x0Þeðx0Þdx0 þ k
Z L

0

Kðjx� x0jÞHðx0 � xÞeðx0Þdx0: ð12Þ

On setting:

K�ðx� x0Þ :¼ Kðjx� x0jÞHðx� x0Þ; ð13aÞ

Kþðx0 � xÞ :¼ Kðjx� x0jÞHðx0 � xÞ; ð13bÞ

viewed as modified kernels defined over the triangular regions depicted in Fig. 3, Eq. (12) can be rewritten

as:

Fig. 2. Unknown strain function: (a) qualitative pattern in the entire domain ½0; L�; (b) and (c) strain function decomposition.
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eðxÞ ¼ C þ k
Z x

0

K�ðx� x0Þe�ðx0Þdx0 þ k
Z L

x
Kþðx0 � xÞeþðx0Þdx0: ð14Þ

On taking into account Eq. (10) and observing that all the quantities ð�Þ� are meaningful for x0 6 x and the
ones ð�Þþ for x0 P x Eq. (14) can be split as follows:

e�ðxÞ ¼ C� þ k
Z x

0

K�ðx� x0Þe�ðx0Þdx0 ð15aÞ

eþðxÞ ¼ Cþ þ k
Z L

x
Kþðx0 � xÞeþðx0Þdx0; ð15bÞ

where C ¼ C� þ Cþ. Eqs. (15a) and (15b) are the two Volterra integral equations of the second kind in

which Eq. (9) has been split up.

It is worth noting that Eq. (15b) can become formally equal to Eq. (15a) and this simply by a co-ordinate

transformation; in fact on setting: y ¼ L� x; s ¼ L� x0 () ds ¼ �dx0), Eq. (15b) can be written as:

eþðyÞ ¼ Cþ � k
Z 0

y
Kþðy � sÞeþðsÞds ¼ Cþ þ k

Z y

0

Kþðy � sÞeþðsÞds: ð16Þ

Observing also that at x ¼ y ¼ L
2
, e�ðL

2
Þ ¼ eþðL

2
Þ the following equality holds true:

C� ¼ Cþ ¼ C
2
: ð17Þ

It is so sufficient to solve only one of the two Volterra equations (15a) or (15b) to have the complete

solution; in fact, denoting with GðxÞ the solution of (15a) in ½0; x�, GðL� xÞ is the solution of (15b) in ½x; L�,
being the complete solution equal to:

eðxÞ ¼ GðxÞ þ GðL� xÞ: ð18Þ

3.3. Solution of the Volterra equation (15a)

The solution of Eq. (15a) is herein determined for a specific shape of the attenuation function (Eringen,

1987), namely:

Fig. 3. Triangular regions defining the modified kernels� domains and the integration paths of Eq. (14) for fixed x (e.g. x ¼ x0).
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Kðjx� x0jÞ ¼ k0e
�jx�x0 j=‘ ð19Þ

being obviously: K�ðx� x0Þ ¼ k0e�ðx�x0Þ=‘ and Kþðx0 � xÞ ¼ k0e�ðx0�xÞ=‘. Condition (2) yields:

k0

Z 1

�1
e�jx�x0 j=‘ dx0 ¼ 1) k0 ¼

1

2‘
ð20a; bÞ

k0 denoting a normalization factor. With the above assumption Eq. (15a) writes:

e�ðxÞ ¼ C� þ k
Z x

0

e�ðx�x0Þ=‘eðx0Þdx0; ð21Þ

in which, on taking into account Eqs. (7), (9) and (20b), k ¼ �n2=2‘n1.
The solution of Eq. (21), obtainable through the method of successive approximations by Neumann�s

series (see e.g. Krasnov et al., 1983), is:

e�ðxÞ ¼ C� þ kC�
Z x

0

Rðx; x0; kÞdx0; ð22aÞ

where

Rðx; x0; kÞ ¼
X1
n¼1

knðx; x0Þkn�1 ð22bÞ

is the resolvent kernel of the integral equation expressed in the shape of Neumann�s series of the iterated
kernels. The latter are given by:

k1ðx; x0Þ � kðx; x0Þ; knðx; x0Þ ¼
Z x

x0
kðx; sÞkn�1ðs; x0Þds: ð23Þ

For the assumed kernel (Eq. (19)) it follows:

k1ðx; x0Þ ¼ e�ðx�x0Þ=‘

k2ðx; x0Þ ¼
Z x

x0
e�ðx�sÞ=‘e�ðs�x0Þ=‘ ds ¼ e�ðx�x0Þ=‘ðx� x0Þ

..

.

knðx; x0Þ ¼
Z x

x0
e�ðx�sÞ=‘e�ðs�x0Þ=‘ ðs � x0Þn�2

ðn� 2Þ! ds ¼ e�ðx�x0Þ=‘ ðx� x0Þn�1

ðn� 1Þ!

ð24Þ

and then:

Rðx; x0; kÞ ¼ e�ðx�x0Þ=‘ekðx�x0Þ: ð25Þ
On substituting Eq. (25) in (22a), the searched solution is:

e�ðxÞ ¼ C� þ k‘
1� k‘

C� 1
�

� eðkx‘�xÞ=‘�: ð26Þ

To determine the constant C� it is sufficient to observe that at x ¼ L=2, eðL
2
Þ ¼ �ee (refer to Section 3.1), from

which, by Eq. (10), the following condition holds true:

e�jx¼L
2
¼ C� þ k‘

1� k‘
C� ¼ �ee

2
) C� ¼ �ee

2
ð1� k‘Þ; ð27a; bÞ
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where it has been considered that the exponential term in Eq. (26) vanishes for the usual (i.e. physically

meaningful) values of ‘ and L. It is easy to verify that, from the above condition, C0 ¼ �ðn2=2n1Þ�ee. On
combining Eqs. (27b) and (26) the searched solution is finally:

e�ðxÞ ¼ �ee
2
1
�

� k‘eðkx‘�xÞ=‘�; ð28Þ

which gives the strain field in ½0; x� for the examined problem. The solution eþ in ½x; L� is given, simply, by
setting x ¼ L� x in Eq. (28), i.e.

eþðxÞ ¼ �ee
2
1
�

� k‘eðk‘L�k‘x�LþxÞ=‘� ð29Þ

and remembering Eq. (18), the complete solution is:

eðxÞ ¼ �ee � k‘
2
�ee eðkx‘�xÞ=‘�

þ eðk‘L�k‘x�LþxÞ=‘� 8 x 2 ½0; L�: ð30Þ

Diagrams of eðxÞ are plotted in the next section for assigned values of �ee, L and material parameters k and ‘.
For completeness the following can be observed: (i) as easily verifiable Eqs. (28) and (29) are the exact

solutions of the two Volterra integral equations (15a) and (15b) with constants C and k previously specified;
(ii) in the limit case of ‘ ! 0, i.e. for a local elastic material, the complete solution (30) gives eðxÞ � �ee,
8x 2 ½0; L� as it has to be; (iii) the theoretical case of a nonlocal bar of infinite length in tension is governed

Fig. 4. Exact strain distribution for the bar problem sketched in Fig. 1 assuming n1 ¼ 0:1.
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by Eq. (7) suitable modified. The latter transforms in an integral equation whose solution, for the assumed

kernel (Eq. (19)), can be found in the literature (e.g. Krasnov et al., 1983). As easily verifiable this solution

gives eðxÞ � �ee, 8x 2 ½�1;1� as it has to be.

3.4. Diagrams of the exact solution

The solution to the studied nonlocal bar problem posed in Section 3.1 (refer also to Fig. 1(a)) is hereafter

plotted in terms of the strain distributions given by Eq. (30). In Figs. 4 and 5 the strain eðxÞ is reported for
different values of the material parameters n1 and ‘. All the curves have been obtained for E ¼ 2:1� 106

daN/cm2; �rr ¼ 100 daN/cm2; A ¼ 1 cm2; L ¼ 100 cm.

The plotted diagrams all show the typical pattern of strain distribution to be expected for the posed

problem. Namely, an increasing trend of the strain values in the bar end portions, with growing strain

values towards the end sections, is evidenced. This effect, previously named ‘‘boundary effect’’, is obviously

strictly related to the internal length material scale value, ‘, assumed and it grows for growing ‘ values. To
this concern it is worth noting that values of ‘ less than 1 cm have not been reported because the relative

results are similar to the ones obtained for ‘ ¼ 1 cm. Values of ‘ greater than 10 cm are also avoided
because they are physically meaningless if compared to the length L ¼ 100 cm of the bar specimen. Finally

the elastic strain e coincides with its nonlocal value (�ee ¼ 4:76� 10�5) at all x sufficiently far from the end

portions.

Fig. 5. Exact strain distribution for the bar problem sketched in Fig. 1 assuming n1 ¼ 0:5.
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4. Conclusion

The exact solution (in terms of strains) for a nonlocal elastic bar of finite length L in (uniform) tension
has been determined. The adopted material model is the one known in the literature as the Eringen model
for nonlocal (integral) elasticity whose nonlocality features reside only in the constitutive law expressed

through a convolution type relation.

The Fredholm integral equation of second kind governing the posed problem has been transformed into

two Volterra integral equations of second kind easily solvable by the method of the iterated kernels for the

specific choice of the attenuation function.

The proposed resolutive methodology seems to be applicable, at least for the simple mechanical problem

here studied, to other analytical forms of the attenuation function entering the constitutive relation as long

as they are symmetric.
The exact solution here presented is, in the authors� opinion, an essential result to validate by com-

parison the effectiveness of approximate and/or numerical procedures aimed to solve mechanical problems

whose solution in the context of nonlocal elasticity is not achievable in closed form.
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